

Nervous System Augmentation

Hasan Al-Nashash Biomedical Engineering Graduate Program American University of Sharjah, UAE

Biomedical and Clinical Engineering Forum, bioclinic 5 Dubai, November 20, 2019

- Neuroengineering Research Group 🗸 Research
- Lead Investigators
- Visiting Scholars
- Graduate Students
- Current Collaborators
- Press Releases/Interviews

Contact

The Neuroengineering Research Group is part of the College of Engineering and the Biosciences and Bioengineering Research Institute. Our highly qualified and experienced faculty members and students are conducting theoretical, computational and experimental research work in a wide variety of topics aimed at advancing our understanding of the human brain and helping to treat nervous system diseases. There are a number of active and exciting research projects covering both healthy subjects and patients with focus on cognitive vigilance assessment and enhancement, emotions monitoring, flexible implantable electrodes in peripheral nerve injury, cortical source imaging in epilepsy and severity assessment of spinal cord injury. These projects are conducted in collaboration with the Dubai Police and Rashid Hospital, and are funded internally by AUS and externally by the Aljalilah Research Foundation.

-

Neuroengineering Research Group

Nerve Injury

Traumatic injury

Spinal cord injury

> Peripheral nerve injury which results in nerve-muscle and related limb functions

Other forms of neuromuscular function loss which may result from disorders such as multiple sclerosis or neuropathy, or injury to nerves affecting the bladder or prostate and related sexual dysfunctions

Research Challenges in Nerve Injury

Assessment of injury level

- Subjective tests
- Objective tests
- Therapy/Augmentation
 - Functional electrical stimulation
 - Brain computer interface for artificial prostheses control

Basso, Beattie and Bresnahan (BBB) score

- Open-field test
- (Score ranges from 0-21)
- It consists of assessments of:
 - Hindlimb joint movements
 - Trunk positions
 - •Paw placement
 - OStepping
 - Coordination
 - •Toe clearance
 - •Paw & tail positioning

Spinal Cord Injury

SSEP

Electrical response of the nervous system to a sensory stimulus, recorded from the somatosensory cortex

Measures the integrity and conductivity of the sensory pathways through spinal cord

Week 7 Postinjury SEP signals obtained from a rat in the 25 mm injury group

Spectral Coherence Measure

Time

Peripheral Nerve Injuries-Muscle Atrophy

Muscle atrophy due to damage of PNS connection to muscles

Peripheral Nerve Injury

- Implantable electrodes for restoring motor function after peripheral nerve injuries
- Market demands integrated designs for restoring sensory and motor function after nerve injuries
- Electrical stimulation therapy helps to restore limb muscle function, sensory feedback and reduce the risk of muscle hypotrophy.
- Simultaneous recording of the desired nerve Electroneurograph (ENG)

Bioelectrodes

Interface between the biological tissue and the electronic

system:

- Sense/measure the bioelectrical signals within the body
- Deliver stimulation signal from the instrumentation system to the target tissue (nerve/muscle)

Bioelectrodes Materials

Inert metal electrodes:

Platinum

Gold Iridium

Silver

□ Platinum-iridium

Bioelectrodes Materials

Polymer-based electrodes with modification:

PEDOT

Polyimide (PI)

Polyaniline (PANi)

Polythiophene (PTh)

Polypyrrole (PPy)

Grand Challenge

Current implantable electrodes are metal-based

Limitations:

- Mechanical Mismatch
- Foreign Body Response
- High Cost

Proposed Novel Solution

DESIGN REQUIREMENTS

Low Cost

- Flexible
- Conductive

Biocompatible

MATERIALS

Polymer + Metal + Mixing Assistant

Materials:

- Silicone Polymer
- Titanium (IV) Oxide
- > Glycerol

Methodology: Material

Methodology: Sample Preparation

Teflon mold (left) electrode sample prepared (right)

Electrochemical Properties

Equivalent Randle's Circuit

Potentiostat Setup

Electrochemical Properties

Material	Specimen	R _s (KΩ)	Z at 1KHz
PEDOT:PSS	Thin film	2.23 [7]	2.54 [7]
Ultrathin parylene C coated platinum	Needle-shaped	359 [8]	21,000 [8]
Platinum	Thin film	2.96 [7]	-
Gold	Thin film	10 [9]	17.2 [9]

Literature values for electrochemical properties of conductive polymers and metal electrodes

Ratio Testing with TiO₂

Si:TiO ₂ :Gl	70:15:15		50:30:20	
Sample	Bulk Impedance (kΩ)	Impedance at 1 kHz (MΩ)	Bulk Impedance (kΩ)	Impedance at 1 kHz (kΩ)
Sample 1	17.2	1.48	4.25	78.2
Sample 2	7.62	1.14	3.55	24.2
Sample 3	17.5	1.51	4.38	105
Average	8.96 ± 0.799	1.37 ± 0.206	4.06 ± 0.448	69.0 ± 41.0

EIS testing results for 3 samples of 15% TiO₂ and 3 samples of 30% TiO₂

Methodology: Mechanical Characterization

Mechanical Testing Results

Stress-strain curve for a sample of 30% TiO₂, 50% silicone and 20% glycerol

Mechanical Testing Results

Material	Specimen	Modulus of Elasticity (MPa)	Elongation%
PEDOT:PSS	Cast film	1.8×10 ³ [57]	4.3 [58]
PI	Thin film	6×10³ [59]	<10% [59]
Platinum	Thin film	140×10 ³ [60]	35 [60]
Gold	Thin film	69.1×10 ³ [60]	-
This Work	Rectangular shape	4.519 ± 1.154	266 ± 27.1

Comparison of mechanical testing results for 30% TiO₂ samples with conventional materials

Vigilance Decrement and Enhancement

Vigilance could be define as the sustained attention to a particular stimulus over a prolonged period of time.

GRAND CHALLENGE

Extreme *high* or *low* <u>cognitive</u> workload in active applications which require <u>vigilance</u> can lead to reduction in <u>cognitive</u> <u>efficiency</u>.

Methods for Cognitive Enhancement

TRADITIONAL

Education and learning

Mental training and encoding strategies

Meditation and yoga

Martial arts, sports and exercise

Caffeine and nicotine

Diet and herbal extracts

CONTEMPORARY

Pharmaceuticals

Psychological interventions

Molecular and gene therapy

Transcranial magnetic stimulation

Electrical stimulation

Gaming/Challenge integration

Tactile and rhythmic haptic

Audio (Music, Binaural Beats)

Challenging Noise – 20 Minutes

Human Brain Senses and Waves

p<0.05

Binaural Auditory Beats (BBs)

When two auditory stimuli of different frequencies are presented to each ear, binaural beats are perceived by the listener.

The binaural beat frequency is equal to the difference between the frequencies applied to each ear.

Objective

Develop a novel computerized vigilance test

Explore the effectiveness of BBs in vigilance enhancement

Identify useful frequencies

Investigate the vigilance permanence with time

Proposed Binaural beats (BBs)

The Carrier frequency is set to: [250 Hz]

BBs are presented at:

[4 Hz, correspond to EEG Theta rhythm]

[10 Hz, correspond to EEG Alpha rhythm]

[16 Hz correspond to EEG Beta rhythm]

Data Collection

Sign the informed consent form approved by the AUS IRB Subject data: survey, data sheet Epworth sleepiness scale test (ESS) Short Stress State Questionnaire (SSSQ) NASA TLX questionnaire Reaction time Response accuracy Eye tracking variables EEG ECG EOG

Assessment Methods

Power spectrum analysis
Functional connectivity
Brain Source localization
Data fusion

Machine learning

Results

EEG connectivity network

Average weighted directed connectivity network for (a) Vigilance, (b) Enhancement. Red indicates high connectivity strength

Thank You

